Constraining the cloud-feedback pattern effect using (mostly) CERES data

CERES Science Team Meeting May 12 2021

Cristi Proistosescu Climate Dynamics & Data Science @UIUC

Tyler Hanke, Jay Pillay (UIUC), Ryan Scott (NASA) Aaron Donohoe (UW), Malte Stuecker (U Hawaii)

Equilibrium Climate Sensitivity (ECS)

"Equilibrium change in Earth's global mean surface temperature, in response to a doubling of atmospheric CO₂ relative to pre-industrial conditions" (IPCC)

ECS is a good predictor of future warming

Observational constraints are weak (as are model-constraints)

Observational constraints are weak (as are model-constraints)

Can we bring better observational constraints?

Energy Budget: $\Delta N = \Delta F - \lambda \Delta T$

Energy Budget: $\Delta N = \Delta F - \lambda \Delta T$

Equilibrium Climate Sensitivity

$$\Delta Q = 0$$

$$ECS = \Delta T_{2\times} = \frac{\Delta F_{2\times}}{\lambda}$$

Equilibrium Climate Sensitivity

$$\Delta N = 0$$

$$ECS = \Delta T_{2\times} = \frac{\Delta F_{2\times}}{\lambda}$$

Equilibrium Climate Sensitivity

$$ECS_{inf} = \frac{\Delta F_{2\times}}{\lambda_{hist}}$$

Equilibrium Climate Sensitivity

$$ECS_{inf} = \frac{\Delta F_{2\times}}{\lambda_{hist}}$$

use CERES to constrain $\Delta \lambda$

Pattern effect: feedback depends on warming pattern

$$\overline{R} = \lambda \overline{T}$$

$$\lambda_{eq} \stackrel{???}{=} \lambda_{hist}$$

Pattern effect: feedback depends on warming pattern

Pattern effect: feedback depends on warming pattern

$$rac{\overline{R}}{\overline{T}} pprox rac{\partial \overline{R}}{\partial \overline{T}}$$

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y} \frac{\partial R(x)}{\partial T(y)} \frac{T(y)}{\overline{T}}$$

atmospheric radiative response

surface warming pattern

Cloud feedback decomposition

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{\overline{T}}{\overline{T}}$$

Cloud Radiative kernels (radiation vs cloud fraction)
Cloud amount change (cloud frac vs cloud controlling factors)
Atmospheric Circulation (atmospheric state vs surface temperature)
Warming Pattern

Cloud feedback decomposition

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{\overline{T}}{\overline{T}}$$

Cloud Radiative kernels (radiation vs cloud fraction)
Cloud amount change (cloud frac vs cloud controlling factors)
Atmospheric Circulation (atmospheric state vs surface temperature)
Warming Pattern

Tropical Climate Dynamics

Cover

10

30

20

Arakawa 1975 Stevens 2005

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{\overline{T}(y)}{\overline{T}}$$

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{T(y)}{\overline{T}}$$

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{T(y)}{\overline{T}}$$

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{T(y)}{\overline{T}}$$

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{T(y)}{\overline{T}}$$

How to constrain cloud feedbacks?

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{\overline{T}}{\overline{T}}$$

Cloud Radiative kernels (radiation vs cloud fraction)
Cloud amount change (cloud frac vs cloud controlling factors)
Atmospheric Circulation (atmospheric state vs surface temperature)
Warming Pattern

Constraining net feedback

Constraining net feedback

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{\overline{T}}{\overline{T}}$$

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{T(y)}{\overline{T}}$$
CERES

GCMs (4xCO2)

Method 1: T + EIS

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{T(y)}{\overline{T}}$$

$$ar{R} pprox \partial R \ \partial ar{T} pprox \partial F \ \partial ar{T} \ \partial F \$$

Method 1: T + EIS

CESM2 Abrupt 4xCO2

Method 1: T + EIS

CESM2 Abrupt 4xCO2

CRE 30S-30N

CESM2 AMIP (band-pass filtered to ENSO)

$$\overline{R} = pprox \frac{\partial R}{\partial \overline{T}} \overline{T} + \frac{\partial R}{\partial EIS} \Delta EIS$$

Constrainable from CERES

Constraining feedback change

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{\overline{T}}{\overline{T}}$$

Constraining feedback change

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{\overline{T}}{\overline{T}}$$

Change in pattern looks like ENSO

Method 2: Emergent constraint

 λ_{ENSO}^{c} =CRE regressed onto nino3.4

Uncertainty Quantification needed

Constraining feedback change vs ENSO

$$\frac{\overline{R}}{\overline{T}} \approx \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial f(x,\tau,p)} \frac{\partial f(x,\tau,p)}{\partial C(x)} \frac{\partial C(x)}{\partial T(y)} \frac{\overline{T}}{\overline{T}}$$

Constraining feedback change with respect to ENSO

Constraining feedback change with respect to ENSO

$$\frac{\overline{R}}{\overline{T}} \approx \lambda_{hist} + \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial C(x)} \frac{\partial C(x)}{\partial \psi} \frac{\Delta \psi}{\overline{T}}$$

Constraining feedback change with respect to ENSO

Model CRE ENSO Composite

Get from GCMs

$$\frac{\overline{R}}{\overline{T}} \approx \lambda_{hist} + \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial C(x)} \frac{\partial C(x)}{\partial \psi} \frac{\Delta \psi}{\overline{T}}$$

Scott et al 2020

Constraining feedback change with respect to ENSO

$$\frac{\overline{R}}{\overline{T}} \approx \lambda_{hist} + \sum_{x,y,\tau,p} \frac{\partial R(x)}{\partial C(x)} \frac{\partial C(x)}{\partial \psi} \frac{\Delta \psi}{\overline{T}}$$

Scott et al 2020

Summary

Pattern effect can be constrained from CERES

- Reduced dimension CRE vs dominant CCF
- Emergent Constraints on ENSO feedback
- Detailed analysis of CRE response to ENSO + how does ENSO state changes?